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AN OPTIMAL LINEAR TIME-INVARIANT ESTIMATOR FOR CERIAIN YYPES OF NONSTATIORARY

T. L. Creenlee 2
ORINCON Corgeratiom

2223 Aveaida de la Playa

La Jolla, California 92037

Abstract

A technique !s developed whereby one can syn-
thesize a causal, linear tlre-invariant estimator,
that is optimal for restricted types of nonstaticn-
&ry procesces. The technique 1s applicable to
linear, time-invariant systems (driven by nons:a-
tionary state ncise) for which scalar observations
&re wade in the presence of additive nonstationatry
roise. Two-dimensionzl Fourier transiorms are used
‘to cbtain an expression for the estimator's mean
square error. It is assumed that it is desirable
to minimize the time integral of this expression.
The calculaticn of this integral results in an
expression which can be minimized by selecting an
estimator depending in a prescribed way on the
two-dimensional Fourier transiorms of the state and
cbservatior noise. The resulting estimator is
causal, lirear, and time invarianc. It is similar
in some respects to the Wiener filter that can be
derived under tne assumpticns of stationary scate
and observarinn moize processcs.
usefulness 1s limired by zhe quirczent that the
opservations be scalar, and the nonstationary pre-
cesses have Fourier transformable autocorrelation
functions.’®

The estimator’se

I. Introcduction

The determination of optimal linear time
invariant estimators that can be used to process
the output of & linear time invariznt system driven
by stationary noise and observed in the presence of
additive staticnary noise, was the subject of
Wiener's work [1]. This early work was followed by
Kalman's 2] determination of a method for finding
optimal estimates given certain types of noncta-
tionary disturtances and corruptions. A major dis-
tinction between these two results was the methods
by which they were cbtained. Wiener's method was
frequency domain based, while FKalman's aprroach
relied on time domain techniques. A survey of per-
tinent literature indicates that until Kalman's
results were published, the major work on nonsta=-
tionary processes was coniined to looking at slight
modifications of the staticrnary problem.? When
Kalrman's results were anncunced, there was a sudden
transition frem frequency domain methods and little
attention has been paid to frequency domain techni=-
ques 1in estimation since that time.

1In many applications, the Kalman estimator
results in exhorbitant computatfonal requirements.
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This 1s due mestly to the fact that its time vary-
ing covariance matrix must be calculated before
the estimator g;in; can be ccmputed. In an effort
to make the estimator less complex, m2st designers
use the steady state pain values or schecdule scts
of gain values that are to be used at different
points iu the processing algorithz. This results
in a simpler estimator that performs suboptimally
during periods when the process being cbserved is
noastationary. The estimator will be optimal when

the process pecomes stationary provided the steady
state value of the estimation error covariance is
used in the gain computation.

Use of the stationary gain values constitutes
selection of the Wiener estinater as a special
case of the Kaiman estimator. It is this proce-
dure for selecting a suboptimal estimator th

that
ne to ask if tliere might be a causal,
3

prompts ©

linear, time-invariant estimator that is cptimal
in some restricted sense rfor scme class of non-
stationary prosesses.

To arrive a2t such an estimator, It see¢ms rea-
scriable to consicder the case most likely to yield
such a result. Nauwely, the system or state rmodel
should be linezr and time inveriant. It shouid be
driven by zero mean nonstationary ncise and
observed in the presence of addicive nonstaticnary
ncise. Optimality, for the sake of obtaining
results comparzble tc Wiener and Kalman, should be

defired in the sense that the mean-square estima-
tion error or some function of it is minim d.

1f cne returns to frecuency domain cousiderations,
it might bYe possible te arrvive at an estimator via
techaiques pzrallelingz those of Wiener, proviced
Fourier transforms of the noise procusses can be
defined. Tnis leads to the use of two-dimensional -
Fourier trzncforms to chtain the average energy
spectral densities of the state and chcervation
ncise protesses. An expression is arrived st for
the rean-squate estimation error znd it is a<sumed
that the optimal esticate should mininmize the
cdoubly ln.iﬂi e time integral of this error. The
expression that results :rom doing this 1s used to
determine th. structure of the opt 1 estimator.
The resultant estimator is similar in sore
respects to the Wieuer estinator. The estimator’'s
usefulness ig limited by the requirement that the

'This rescirch was supported in part under
OSR graut §76-1958. Support wac aiso provided
by Hughes Alrcsaft Corpany.

2gee reference 12.

Conference, Clearwater Beach, Florida, 1976.
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observations be scalar and the noise processes
have Fourier transformable autocorrelation func-
tions that can successfully unaLrpo spectral fac-
torization.

I1. Systew Assumptions and Outline of Approach

The solution of the problem posed in the
introduction is developed in four steps. These
are:!

1. Consider a linear, time-invariant system
driven by nonstationary noise and observed in
the presence of additive nonstationary noise.
Assume the observations are scalar.

2. Formulate an expression for the mean square
estimation error of a linear time-invariant
estimator with impulse respense h(7t), that
might be used to obtain an estimate of the
noise-free observacion.

3. The expression for the mean sguare estimation
error obtained in step 2 will in general be
tine dependent due to the noise being nonsta-
tionary. Provided that one is willing to
accept a filter that minimizes this expression
in an average sense, i.e., over a doubly
infinite time interval, one can arrive at a
simpler expression for the integral of the
mean square error that does not depend on
tine.

4. Finally, 1if cne festriccts the type of nonsta-
tionary noise processes sufficiently, the
expression obtained in step 3 can be minimized
by a properly designed causal, linear, tiuze-~
invariant estimator that minimizes the inte=~
gral of the .mean square estimation errcr,

The following sections will expand and elabo-
rate on the four steps. A final section will dis-
cuss the implications of the final result.

III. System and Noise Models

Proceeding with the problem solution, consider
the error propagation. The system being considered
is linear and time invariant. As such, it is
described by the following linear, time-invariant
vector matrix differential equations:

x(t) = Ax(t) + Bu(t) (3.1)

y(t) = Cx(t) + Dv(t) = s(t) + n(t)

vhere
x(t): 1s a vector representing the state of
. the system

y(t): 1s a vector representing an observation
of the state of the system (scalar)

u(t),v(t): are random processes

The problem s to estimate any time-invariant (but
not necessarily causal) linear functional w(t) of

the signal s(t) defined by the following infinite

convolutfon integral:

w(t) = j 1) sCe = 1) d) (3.2)

-

1t .is desired to determine, for every t, an
estimate O(t), for w(t) which minimizes

Efw(o) - ()2 (3.3)

or some function of this expression by processing
only the "present and past’ values of the observed
data:

y(1) = s(1) + n(1) —=*<T < E

It is further required that

w(t) = jh(x)y(z-‘r) d:i; h(t) = 0,1<0 (3.4)

In preparation for arriving at an expression
for the estimator's mean scuare estimation error
let us intreduce the two-dimensional Fourier
transform. ]

Definition: The two-dimensional Fourier transform
of a function f(tl.tz) is given by:?
e o [CILIR Y
FUoy ey = [ [ £ e ac, dt,
- =

its inverse is defined by

i(u t. ¥+ w

T leE

2)

£le),0) = — fLr<ju1,ju2)e

(2n)

dul dwz

As in the case of one-dimensional transforms,
these two expressions constitute a Fourjer trans-
forwm pzir that we will represent symbolically as

f£(t),t)) = F(ju,,3w,)

It should be noted that if f(tl.tz) is such
that

ffl f(e),e,) | dejde, <=

-—0 —

then F(ju ,j@z) exists for every W)W, and it 1s
bounded.

2For a description of two-dimensional Fourier
transforms and their application to nonstationary
processes, refer to Papoulis, A., Probability,
Random Variables, and Stochastic Proce:ses.
H;Grau-Hzll. 1965, Chapter 12.
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IV. The Mecan Square Error Expression

We can compute an expression for e(t) = w(t)
- O(t). To do this recognize that:

o(t) = [ y(t-1) h(1) dt . .1

—0

and for the present let

w(t) = ] s(t-1) 1(1) dt (4.2)

-4
th;:n by subtraction

e(t) = w(t) - &(e)
and the auc::co.rrela:ion of e(t) 1is

R, (t;.t,) = Ele(rde(ry)} = E{fw(e,)-0(e,)]

[we,)-B(e )]} (4.3)

Substitution, expansion, and the interchange of
expectatien and integration yields:

R (t1,t)) = Rss“l"z)'i(‘l"“‘z)

- R'S(tl 1‘2)’1(t1).h(t2)

- ( :
R, (8, t,)*h(E ) *4(z,)

+ R {8,870 () *ic,)

+ R (£, 6)"h(e () (4.d) :

Where we have assumed terms in R__(t,,t,) and

y Rl 5 .
R_ (t,,t.) are zero and "*" denot@s convolution in

s
tp.e time“domain.? Assume each of the above corre-
lation functions has a two-dimensional transform
defined as follows:

5

Rss(tl'tZ) = rss(“’x""z)

t

2

£ (4.5)
Rnn(tl'tz) f: lunn(ml'mi.’)

2

Next we make use of a property from [3] page 442,

t

. Y

l(tl.Kz)*V(tl)*H(tZ) ;,:: l"(ml ,wz)w(ul)k'(wz)
2

(4.6)

with
- -ju, t
W) & j v(t))e B ldtl - (3w,
§ 32 (4.7)
~jw,t
Viwy) b j wee 2 2&:2 - W(ju,)

.

teing the standard one-dimensional Fourier trans-
forms of U(:l) and H(Lz) respectively.

Taking the two-dimensional Fourler transform
of Ree(tl'tz) we have:

Teeleyruy) = Tyglugiwy) [”5‘“‘1)'“(-‘“’1)]
[I(jmz)-H(ij)] +I‘nn(ml,w2)

[H(j“’l)] [H(juz)] (4.8)

I1f we now take the inverse transform of I"e (w ""2)'
ve have an expression for the autocorrelation cf
the estimation error:

1 o
R (t,,t,) = ——— - o (" 1
ee* 122 (217)2 _!; f l 88 12

[!(le)—ﬁgjul.)] {I(juz)-ﬁ(jwz)]

J(w, t 40.t.)
« vITE2 +rnn(ul,u2){ﬁ(jux)}

J(w,t .+ t,)
[H(jwzﬂe e }dmlduz (4.9)

J

Recall that we seck an expression for the mean
square estimation error for each point in time.
Clearly, if L, =ty=t in the previous expression
we have:

R (t,t) = E{e(t)e(t)]

L f]

(v, ,w,) ijw )-H(Jw )]
(2“)2_“ 1°°2 [ 1 1

‘l"
l

j(ulmz) t
[l(jwz)-ll( 3u2)] e T (©@)50))

[H(j‘wl)] [H(j'.cz)] eJ (mlmz) t}c'.ic.sldmz
. (4.10)

3The cross terms can be carried through the
developzent but they provide no additional prob-
lexs end therefore have heen deleted.
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Note that this expression for the menn square esti-
mation error is coumpletely peneral except for the
restricrion that the indicated signal and noise
two-dinensional transforms exist.® .

1f we ponder this expression for a moment, we

. gee that to sclect an estimator H(jw) that would

minizize it for each value of t, is not a simple
task. In fact, it is not obvious that such an
estinator even exists.

It is interesting to note that the assumption
of stationary disturbances gives-rise to two-dimen~
sional signal and noise transforms that cause the
mean square error expression to become independent
of time. As shown in {3], the two-dimensional
transforms of stationary processes do not exist
unless impulses are included in the transferms.

When such transforms are substituted in (4.10), the,

right hand side of this expression yields an inte~
gral that 1s independent of time. 7This integral is
minimized by the causal, linear, time-invariant
filter arrived at by N. Viener. The signal and
ncise terms in this integral will be represented by
the ordinary power spectral densiries instead of
the average energy spectral densities which will be
defined in Section V.

V. Consideration of the Integral of the
Mean Square Estimation Error

Consider equation (4.10). We are concerned
with selecting an estimator H(jw) that will mini-
mize this expression or some function of it.
Suppose we address this problem directly by trying
to minimize (4.10) fer each value of t. If we
make the cliange of variabie

wl + u2 =p

and hold w, constant while integrating with respect
to p, equation (4.10) becomes

Ro(e.t) = o _[{'21—1: _[rss(“’l""“l)
[resup-ucsup] [165 o= )]
*rnn(“"x“"""x)'["(j“’x)] [H(J(p-wl))]
dul} Pt (5.1)

We must now find H(jw) such that this expression
or some function of R,a(t,t) is minimized for each
value of t.

Note that the bracketed expression is an integral
with respect to w, and it will result in a function
of p only. If we denote this function of p by
E‘(p), then (5.1) becomes:

x“'(:.:)-T‘,, f £2(p)edPtap (5.2)

Frox (5.2) we immeciutely recopnize LI t,t)
L gE{e“(t)) and E‘(p) as a Fourter trunsf-im patir.
we denote this by:
* pl
Ele2(t)) T EX(p)

Using this notation, we also recall:

E2(p) = / Eel(t) e IPtar (5.3)

-

In particular, for p = 0 we have the simple
resule:

/” E{ez(t))dl = Ez(p) (5.4)
— p-o

Note that .(5.4) implies the doubly infinite time
integral of the mgan square estimation error is
finite provided E‘(p): is finite. From (5.1)

p=0
: T
EZ(P)|p-0 B l{rss<w,.-wl)[lu:wp-u(wx)1 ]
‘rnn(“p-wl)[luuul)Iz]}dul (5.5)

The terms Fss(ul.-w ) and rnn(“l"“l) are called
the average energy spectral densities of the
signal and ncise processes. The right-hand side
of (5.5) bears a striking resemblance to the mean
square error expression of a Wiener filter. This
similarity immediately suggests that one may be
able to select a ceucal, linear, time-invariant
estizator H(juw), that will minimize (5.5) ard
thereby the integral of the mean square estimzation
error. The resulting estimator may be cdifferent
from the Wiener estimator since the position of
the power spectral density has been assumed by the
energy spectral density.
V1. The Optimal Linear Time-Invariant Estimator
for a Restricted Class of Nonstationary
Processes

From the previous section we note that equa-
tion (5.4) and (5.5) yield:

J et e - 5 f) [r, @

[[I(jw)-ﬂ(jw) [2]+Tnn(u,-m)

[imesr?] } e 6.1

N ——

*In addition, 1f we assume that the estimate
is unbiased, then we can use the terms mean square
error and error varjance interchangeably.
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Assuming this integral exists, the first questioun
one asks is whether or not there is an H(jw) for
which (6.1) is minimized. This question is
answered for a restricted class of, processes by the
folluwing theorem, which applies to the tilrering
case (1{jw) = 1).

Theoren

Suppose that:

a. The average energy spectral densities
T?s(u.—u) and I (w,-«) are rational functions
of w.

b. The functions an(u,-w) have no repeated poles
in the w-plane.

Then the choice of H(jw) which is linear, causal
(al) poles iu the left half s-plane) and minimizes

the expansion on the left side of (6.1) for
I(Jw) = 1 (the filtering case) is given by:.

= = F,(s)
5 H(ju) = H(s) - —'_I-_T]
s=J IFW(S)]
s=jw
where
T T * o i =
ryy(’) - IIyy(S)l [Fyy(S)l = Pss(S)+Tnn(5)
Fa(s) = r.s(w.-w)ls-jw

Fon(s) = Pna(u.-u)ls_Jm

rss (S)
(Tyy ()]

= Fl(s) + Fz(-s)

'Fl(s) denotes the factored portion that is
analytic in the right cne-half s-plane

Fz(—s) denotes the factored porcion that is
analytic in the left one-half s-plane

[ ]+ denotes that portion of [ ] having
poles and zeroes in the left one-half
s-plane only

[ 17 denotes that porticn of [ ) having
poles and zeroes in the right one-half
s-plane only.

Proof

The proof of this theorem is given in

b ¢ reference [4] as theorem 2.

i<

k' 4

VII. Application of the Result

The result given by the theorem indicates that
for nonstationary processes with two-dimensional
Fourier transforms it i5 possible to arrive at an
e 5 H(jw) for which the integral of the mean square
estimation error is minimized. Clearly, the class
of nonstationary processes for which:

g
-
-

R
“

-

s '8 ?'! s' a3

™
leR“(:l.tz)!dt‘d:z < w (7.1)

-5 -

and
IL IR (£).tp) [dt dt, < = (1.2)

may not be all that large, but it is quire possi-
ble that some of the processes encountered in
practical situations may be approximated by such
processes.

1f one considers the nature cof those pro-
cesses that arise frowm random initial conditions
applied to linear dynamical systems for irstance,
one finds autocorrelation functions of the form
that satisfy (7.1) and (7.2). The following exam-—
ple demonstrates the application of the theorem to
a three-dimensional system with scaler cbhserva-
tions and vhite nonstationary disturbances.

Example

In this example, it is assumed that the system
4s described by a vector matrix differenrial ecua-
tion. The cbservation is a scalar valued function
of the system's states with additive white nonstia-
tiornary noise. %

Assumpticns:
Yector System

e =y
i1

; xy l 0
:}2 « |l 0o =1 x,| + |of
x, 0 0 -2fx, 1

Scalar Observation

~
1 -2 s v
-

1

1
. y=[1 0 0)}x +v

X3

Noise Procegisi
E{u(t)] = E[v(r)] =0
-0.1([:1[4»[:2])
Efu(eu(t,)] = e §(t-t,)

-0.5(|z1|+|:2|)
Elv(t))v(t))] = e 8(t -t,)
For this system the transfer function is just

2

C(3u) = Gu+2) Qu+3) Gu+D)

The two-dimensional transform of the signal
sutocorrelation is
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Faafyowy) = T, Gw),0)) Gl3wy) Gliuw,)

8 ]

a(8.1) 2
La(o.1)7+(ul+u2)2 oy #2) (0 +3) Gy +1)

-

2 ‘.
(JU242)(jw2*3)(sz+l)

L

The observation noise transform is:

4(0.5)

r (u,,0.)) =T _(0,,0,) = ———0
nn' 1'72 w12 4(0.5)2+(u1+u2)2

The average energy spectra becomes:

4
(0.1) W+ (2)2) (W+(3)2) (w2+1)

Pss(u,-m) -

1
rnn(w‘_w) * 0.5

Using these s;-.tra the optimal filter, as
indicated by the- 2 is just

fiey = —0:1436 (s? + 6.071s + 10.324)
(s + 3.0718) (s2 + 3.0718s + 2.4359)

VIII. Conclusions

This paper has discussed a technique whereby
one can synthesize a causal, linear, rime-invariant
estimator that is optimal for restricted types of
nonstationary processes. The results are applica-
ble to linear, time-invariant systems (driven by
nonstationary state noise) for which scalar obser-
vations are made in the presence of additive non-
stationary noise. The resulting estimator is
similar in some respects to the Wiener filter that
can be derived under the assumptions of stationary
state and observation noise processes. This simi-
larity is reflected in the fact that the power
spectra of the stationary processes are replaced by
the average energy spectra of the nonstaticnary
processes. The estimator's usefulness is limited
by the requirement that the observations be scalar,
and the nonstationary processes have Fourier trans-
formable autocorrelation functions.
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